Copied to
clipboard

G = C43⋊C7order 448 = 26·7

The semidirect product of C43 and C7 acting faithfully

metabelian, soluble, monomial, A-group

Aliases: C43⋊C7, C23.1F8, SmallGroup(448,178)

Series: Derived Chief Lower central Upper central

C1C43 — C43⋊C7
C1C23C43 — C43⋊C7
C43 — C43⋊C7
C1

Generators and relations for C43⋊C7
 G = < a,b,c,d | a4=b4=c4=d7=1, ab=ba, ac=ca, dad-1=bc-1, bc=cb, dbd-1=a-1, dcd-1=b-1c2 >

7C2
64C7
7C4
7C4
7C4
7C22
7C4
7C2×C4
7C2×C4
7C2×C4
7C2×C4
7C2×C4
7C2×C4
7C42
7C42
7C42
7C22×C4
7C42
8F8
7C2×C42

Character table of C43⋊C7

 class 124A4B4C4D4E4F4G4H7A7B7C7D7E7F
 size 1777777777646464646464
ρ11111111111111111    trivial
ρ21111111111ζ73ζ76ζ72ζ75ζ7ζ74    linear of order 7
ρ31111111111ζ75ζ73ζ7ζ76ζ74ζ72    linear of order 7
ρ41111111111ζ72ζ74ζ76ζ7ζ73ζ75    linear of order 7
ρ51111111111ζ74ζ7ζ75ζ72ζ76ζ73    linear of order 7
ρ61111111111ζ7ζ72ζ73ζ74ζ75ζ76    linear of order 7
ρ71111111111ζ76ζ75ζ74ζ73ζ72ζ7    linear of order 7
ρ877-1-1-1-1-1-1-1-1000000    orthogonal lifted from F8
ρ97-11-2i1+2i1+2i-3-2i-3+2i1-2i1+2i1-2i000000    complex faithful
ρ107-11+2i1-2i-3+2i1-2i1+2i-3-2i1-2i1+2i000000    complex faithful
ρ117-11-2i1+2i-3-2i1+2i1-2i-3+2i1+2i1-2i000000    complex faithful
ρ127-11+2i1-2i1-2i-3+2i-3-2i1+2i1-2i1+2i000000    complex faithful
ρ137-1-3-2i-3+2i1-2i1-2i1+2i1+2i1-2i1+2i000000    complex faithful
ρ147-11+2i1-2i1-2i1-2i1+2i1+2i-3+2i-3-2i000000    complex faithful
ρ157-1-3+2i-3-2i1+2i1+2i1-2i1-2i1+2i1-2i000000    complex faithful
ρ167-11-2i1+2i1+2i1+2i1-2i1-2i-3-2i-3+2i000000    complex faithful

Permutation representations of C43⋊C7
On 28 points - transitive group 28T61
Generators in S28
(1 20)(2 25 21 9)(3 15)(4 27 16 11)(5 28 17 12)(6 13 18 22)(7 19)(8 24)(10 26)(14 23)
(1 20)(2 21)(3 10 15 26)(4 16)(5 12 17 28)(6 13 18 22)(7 23 19 14)(8 24)(9 25)(11 27)
(1 24 20 8)(3 15)(4 27 16 11)(6 22 18 13)(7 14 19 23)(10 26)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)

G:=sub<Sym(28)| (1,20)(2,25,21,9)(3,15)(4,27,16,11)(5,28,17,12)(6,13,18,22)(7,19)(8,24)(10,26)(14,23), (1,20)(2,21)(3,10,15,26)(4,16)(5,12,17,28)(6,13,18,22)(7,23,19,14)(8,24)(9,25)(11,27), (1,24,20,8)(3,15)(4,27,16,11)(6,22,18,13)(7,14,19,23)(10,26), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)>;

G:=Group( (1,20)(2,25,21,9)(3,15)(4,27,16,11)(5,28,17,12)(6,13,18,22)(7,19)(8,24)(10,26)(14,23), (1,20)(2,21)(3,10,15,26)(4,16)(5,12,17,28)(6,13,18,22)(7,23,19,14)(8,24)(9,25)(11,27), (1,24,20,8)(3,15)(4,27,16,11)(6,22,18,13)(7,14,19,23)(10,26), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28) );

G=PermutationGroup([[(1,20),(2,25,21,9),(3,15),(4,27,16,11),(5,28,17,12),(6,13,18,22),(7,19),(8,24),(10,26),(14,23)], [(1,20),(2,21),(3,10,15,26),(4,16),(5,12,17,28),(6,13,18,22),(7,23,19,14),(8,24),(9,25),(11,27)], [(1,24,20,8),(3,15),(4,27,16,11),(6,22,18,13),(7,14,19,23),(10,26)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)]])

G:=TransitiveGroup(28,61);

Matrix representation of C43⋊C7 in GL7(𝔽29)

28000000
02800000
230170000
180012000
100001200
00000280
260000012
,
28000000
271200000
230170000
160017000
00002800
10000170
00000028
,
12000000
261700000
00120000
16001000
00001200
170000280
7000001
,
72700000
02210000
0901000
0500100
0600010
01300001
0400000

G:=sub<GL(7,GF(29))| [28,0,23,18,10,0,26,0,28,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,12],[28,27,23,16,0,1,0,0,12,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,28],[12,26,0,16,0,17,7,0,17,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,1],[7,0,0,0,0,0,0,27,22,9,5,6,13,4,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;

C43⋊C7 in GAP, Magma, Sage, TeX

C_4^3\rtimes C_7
% in TeX

G:=Group("C4^3:C7");
// GroupNames label

G:=SmallGroup(448,178);
// by ID

G=gap.SmallGroup(448,178);
# by ID

G:=PCGroup([7,-7,-2,2,2,-2,2,2,197,792,590,352,7255,360,9804,16469,16470]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=d^7=1,a*b=b*a,a*c=c*a,d*a*d^-1=b*c^-1,b*c=c*b,d*b*d^-1=a^-1,d*c*d^-1=b^-1*c^2>;
// generators/relations

Export

Subgroup lattice of C43⋊C7 in TeX
Character table of C43⋊C7 in TeX

׿
×
𝔽