metabelian, soluble, monomial, A-group
Aliases: C43⋊C7, C23.1F8, SmallGroup(448,178)
Series: Derived ►Chief ►Lower central ►Upper central
C43 — C43⋊C7 |
Generators and relations for C43⋊C7
G = < a,b,c,d | a4=b4=c4=d7=1, ab=ba, ac=ca, dad-1=bc-1, bc=cb, dbd-1=a-1, dcd-1=b-1c2 >
Character table of C43⋊C7
class | 1 | 2 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 7A | 7B | 7C | 7D | 7E | 7F | |
size | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 64 | 64 | 64 | 64 | 64 | 64 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ73 | ζ76 | ζ72 | ζ75 | ζ7 | ζ74 | linear of order 7 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ75 | ζ73 | ζ7 | ζ76 | ζ74 | ζ72 | linear of order 7 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ72 | ζ74 | ζ76 | ζ7 | ζ73 | ζ75 | linear of order 7 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ74 | ζ7 | ζ75 | ζ72 | ζ76 | ζ73 | linear of order 7 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ7 | ζ72 | ζ73 | ζ74 | ζ75 | ζ76 | linear of order 7 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ76 | ζ75 | ζ74 | ζ73 | ζ72 | ζ7 | linear of order 7 |
ρ8 | 7 | 7 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from F8 |
ρ9 | 7 | -1 | 1-2i | 1+2i | 1+2i | -3-2i | -3+2i | 1-2i | 1+2i | 1-2i | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ10 | 7 | -1 | 1+2i | 1-2i | -3+2i | 1-2i | 1+2i | -3-2i | 1-2i | 1+2i | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ11 | 7 | -1 | 1-2i | 1+2i | -3-2i | 1+2i | 1-2i | -3+2i | 1+2i | 1-2i | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ12 | 7 | -1 | 1+2i | 1-2i | 1-2i | -3+2i | -3-2i | 1+2i | 1-2i | 1+2i | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ13 | 7 | -1 | -3-2i | -3+2i | 1-2i | 1-2i | 1+2i | 1+2i | 1-2i | 1+2i | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ14 | 7 | -1 | 1+2i | 1-2i | 1-2i | 1-2i | 1+2i | 1+2i | -3+2i | -3-2i | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ15 | 7 | -1 | -3+2i | -3-2i | 1+2i | 1+2i | 1-2i | 1-2i | 1+2i | 1-2i | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ16 | 7 | -1 | 1-2i | 1+2i | 1+2i | 1+2i | 1-2i | 1-2i | -3-2i | -3+2i | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 20)(2 25 21 9)(3 15)(4 27 16 11)(5 28 17 12)(6 13 18 22)(7 19)(8 24)(10 26)(14 23)
(1 20)(2 21)(3 10 15 26)(4 16)(5 12 17 28)(6 13 18 22)(7 23 19 14)(8 24)(9 25)(11 27)
(1 24 20 8)(3 15)(4 27 16 11)(6 22 18 13)(7 14 19 23)(10 26)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
G:=sub<Sym(28)| (1,20)(2,25,21,9)(3,15)(4,27,16,11)(5,28,17,12)(6,13,18,22)(7,19)(8,24)(10,26)(14,23), (1,20)(2,21)(3,10,15,26)(4,16)(5,12,17,28)(6,13,18,22)(7,23,19,14)(8,24)(9,25)(11,27), (1,24,20,8)(3,15)(4,27,16,11)(6,22,18,13)(7,14,19,23)(10,26), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)>;
G:=Group( (1,20)(2,25,21,9)(3,15)(4,27,16,11)(5,28,17,12)(6,13,18,22)(7,19)(8,24)(10,26)(14,23), (1,20)(2,21)(3,10,15,26)(4,16)(5,12,17,28)(6,13,18,22)(7,23,19,14)(8,24)(9,25)(11,27), (1,24,20,8)(3,15)(4,27,16,11)(6,22,18,13)(7,14,19,23)(10,26), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28) );
G=PermutationGroup([[(1,20),(2,25,21,9),(3,15),(4,27,16,11),(5,28,17,12),(6,13,18,22),(7,19),(8,24),(10,26),(14,23)], [(1,20),(2,21),(3,10,15,26),(4,16),(5,12,17,28),(6,13,18,22),(7,23,19,14),(8,24),(9,25),(11,27)], [(1,24,20,8),(3,15),(4,27,16,11),(6,22,18,13),(7,14,19,23),(10,26)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)]])
G:=TransitiveGroup(28,61);
Matrix representation of C43⋊C7 ►in GL7(𝔽29)
28 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 | 0 |
23 | 0 | 17 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 12 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 |
26 | 0 | 0 | 0 | 0 | 0 | 12 |
28 | 0 | 0 | 0 | 0 | 0 | 0 |
27 | 12 | 0 | 0 | 0 | 0 | 0 |
23 | 0 | 17 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 17 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 17 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 |
12 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | 17 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 28 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 1 |
7 | 27 | 0 | 0 | 0 | 0 | 0 |
0 | 22 | 1 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 1 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 1 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 1 | 0 |
0 | 13 | 0 | 0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(7,GF(29))| [28,0,23,18,10,0,26,0,28,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,12],[28,27,23,16,0,1,0,0,12,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,28],[12,26,0,16,0,17,7,0,17,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,1],[7,0,0,0,0,0,0,27,22,9,5,6,13,4,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;
C43⋊C7 in GAP, Magma, Sage, TeX
C_4^3\rtimes C_7
% in TeX
G:=Group("C4^3:C7");
// GroupNames label
G:=SmallGroup(448,178);
// by ID
G=gap.SmallGroup(448,178);
# by ID
G:=PCGroup([7,-7,-2,2,2,-2,2,2,197,792,590,352,7255,360,9804,16469,16470]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=d^7=1,a*b=b*a,a*c=c*a,d*a*d^-1=b*c^-1,b*c=c*b,d*b*d^-1=a^-1,d*c*d^-1=b^-1*c^2>;
// generators/relations
Export
Subgroup lattice of C43⋊C7 in TeX
Character table of C43⋊C7 in TeX